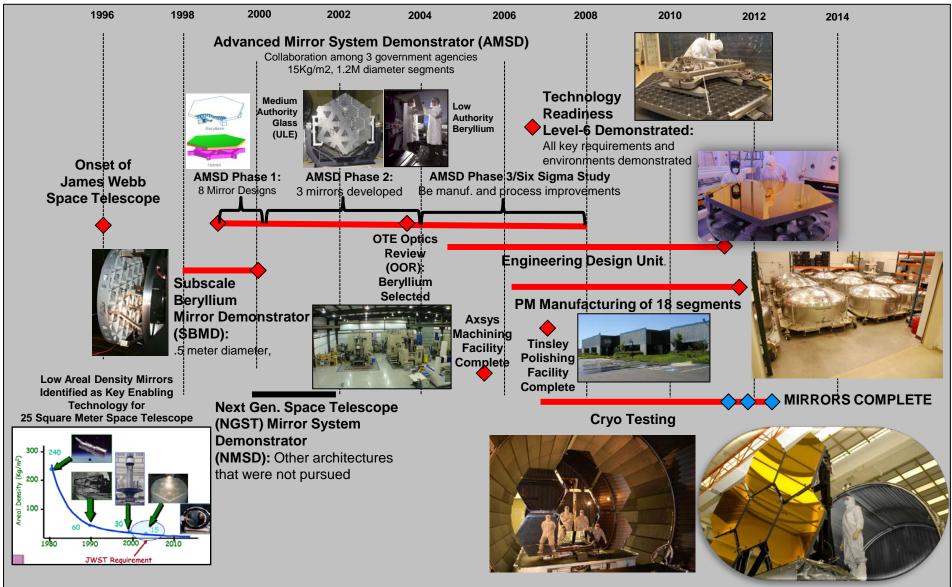

James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

Lee Feinberg, GSFC
Ritva Keski Kuha, GSFC
Scott Texter, NGAS
Charlie Atkinson, NGAS
Mark Bergeland, Ball Aerospace
Ben Gallagher, Ball Aerospace

Outline

- Introduction
- As-executed roadmap
- Technology development
- Mirror Selection
- Mirror Process Flow
- As –run schedule
- Risk Management History
- Results

Mirror History



Mirror System Design Parameters Studied

Wide Variety of Mirror System Design Parameters Studied										
Item	SBMD (Ball)	SBMD (Ball) NMSD AMSD								
Substrate Material	Be	Glass/Composite Hybrid (COI) Glass (UA)	Be (Ball) ULE (Kodak) SiO2 (Goodrich)							
Reaction Structure	Be	Composite (both)	Composite (all)							
Control Authority	Low (Focus Only)	Low (COI) High (UA)	Low (Ball) Medium (Kodak) High (Goodrich)							
Mounting	Linear Flexure	Bipods (COI) 166 Hard (UA)	9 Bi-Flex (Ball) 16 Force (Kodak) 67 Bi/Ax-Flex (Goodrich)							
Diameter	0.53 m	2 m (COI) 1.6 m (UA)	1.38 m (Ball) 1.4 m (Kodak) 1.3 m (Goodrich)							
Areal Density	9.8 kg/m2 (mirror only)	13 kg/m2	15 kg/m2							

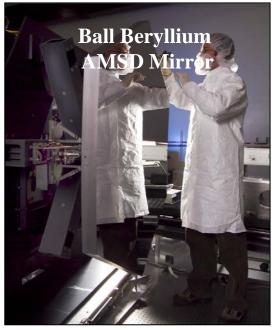
Technology Development Specs

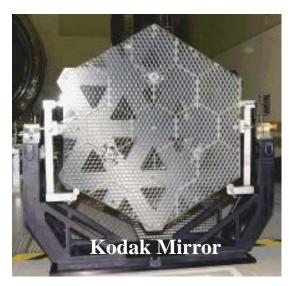
Mirror Technology Development Specifications											
Item	SBMD	SBMD NMSD AMSD Units									
Form	Circle with Flat	Hex	Hex								
Prescription	Sphere	Sphere	Off-Axis Parabola								
Diameter	> 0.5	1.5 to 2.0	1.2 to 1.5	meter							
Areal Density	<12	< 15	< 15	kg/m ²							
Radius	20	15	10	meter							
PV Figure	160	160	250	nm							
RMS Figure			50	nm							
PV Mid (1-10 cm ⁻¹)	63	63		nm							
RMS Finish	3	2	4	nm							
Stiffness (1st Mode)			150	HZ							

Incremental TRL-6

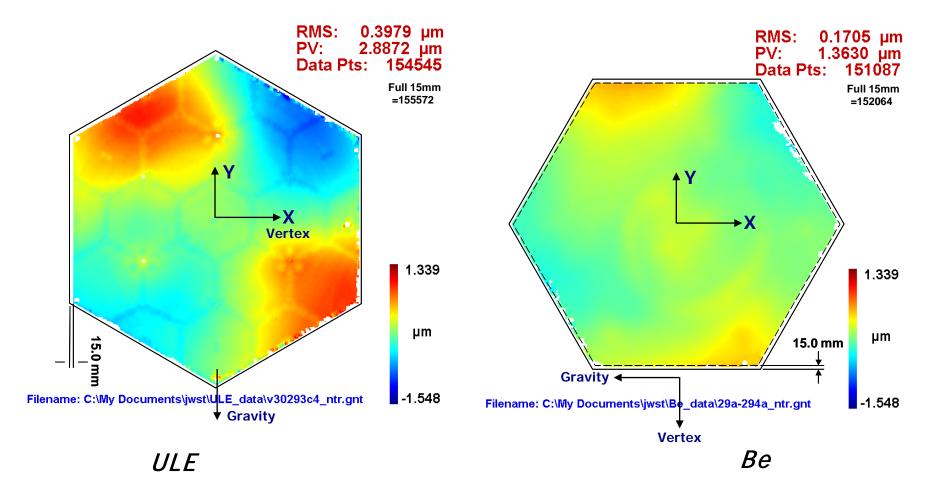
Demonstrator	Technology	Validity to JWST
SBMD	Cryogenic Coating Cryo-Null Figuring	SBMD developed a low stress gold coating application that can be applied to any beryllium mirror. Coating of large mirrors (like JWST) is not material specific and has been developed on other flight programs.
AMSD Mirror	Figuring Cryogenic performance Actuation capability	All differences between the JWST PMSA and the AMSD mirror improves manufacturability, cryogenic performance, and provides more actuation degrees of freedom
AMSD Stress Coupons	Long term material stability	JWST PMSA's are manufactured using the exact processing developed on AMSD III to assure low residual surface stresses and low material creep.
JWST EDU & Flight Segment	Launch distortion Actuation Capability	JWST flight segment used to show technology readiness

Advanced Mirror System Demonstrator (AMSD)





- NASA, DOD, NRO \$50M partnership funded 3 lightweight mirror technologies shown on the right
- Ball beryllium mirror technology completed and baselined for JWST in 2003
 - Ball beryllium mirror demonstrated all key aspects of JWST technology except for demonstration of vibro-acoustics survival which will be demonstrated this June on the Engineering Design Unit mirror
- Mirror manufacturing of flight mirrors started in September 2003

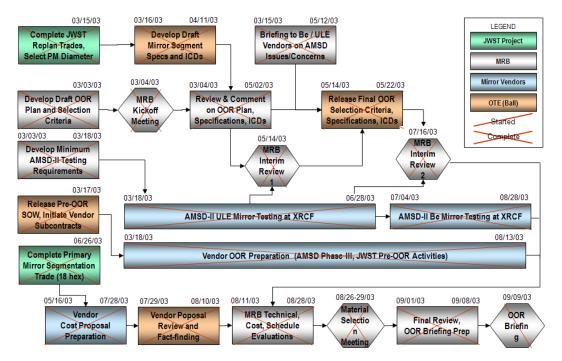


Mirror Technology Choices

~30 K minus Ambient

Beryllium Mirror Had Superior Cryogenic Properties

Mirror Selection Process and Results



- Beryllium was rated as the highest performing, lowest technical risk solution
 - Material has superior cryo CTE and conductivity, only technical issue was managing surface stresses to achieve final convergences
 - Provided best potential science performance, had significant margins on thermal performance and stiffness/mass
 - Key concerns were schedule and staffing at Tinsley
 - Material and manufacturing cost deltas between ULE and Beryllium were small when compared to the potential schedule deltas

Mirror Recommendation Board (MRB)

Lee Feinberg GSFC, OTE Manager, MRB Co-Chair
 Ritva Keski-Kuha GSFC, OTE Deputy Manager
 Mark Clampin GSFC, JWST Observatory Scientist
 Phil Stahl MSFC, JWST Mirror Technology Lead
 Kevin Russell MSFC, AMSD Program Manager
 Scott Texter NGST, OTE Manager, MRB Co-Chair
 Charlie Atkinson NGST, OTE Deputy Manager

Gary Rosiak
 Beth Barinek
 Doug Neam
 Mark Bergeland
 Gary Matthews
 Mark Bergeland
 Mark Bergeland
 Gary Matthews
 Manager Ollection Systems

MRB Technical Consultants

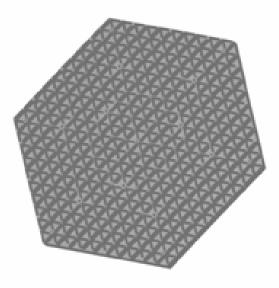
Lester Cohen
 SAO, Chief Engineer

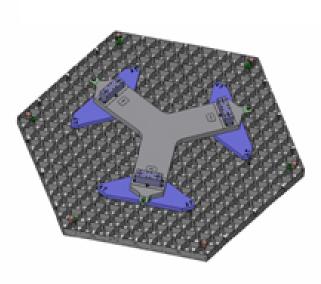
Matt Mountain Gemini Director and JWST SWG Representative

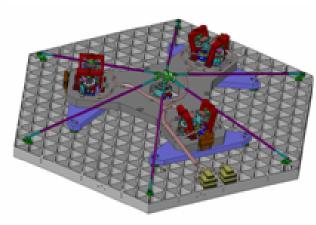
John Hraba MSFC

Garv Golnik Schafer Corporation

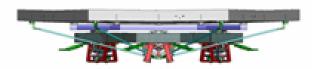
Paul Lightsey
 BATC, OTE Systems Engineer
 James Hadaway
 University of Alabama, Huntsville


Mirror Assembly Configurations

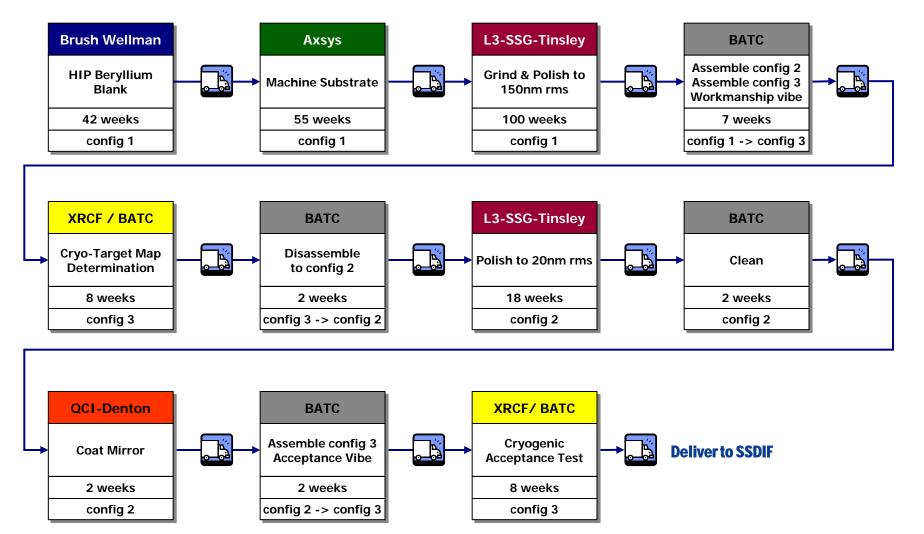




Configuration 2

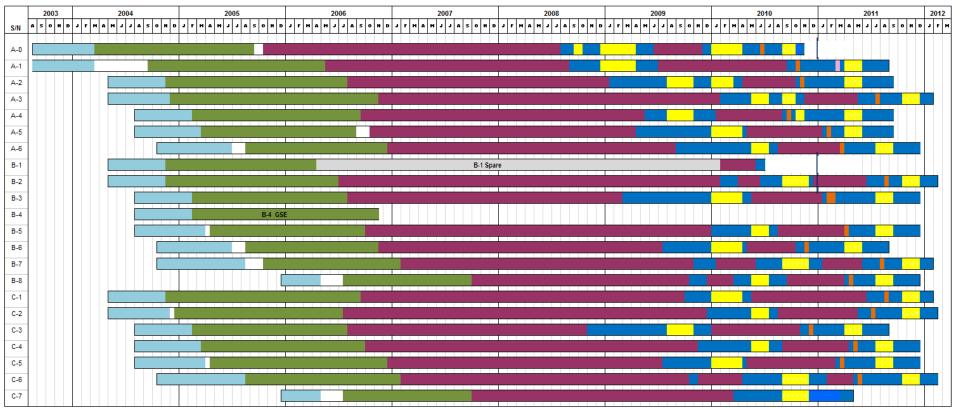

Configuration 3

Mirror Substrate Only


Mirror Substrate with Flexures, Whiffles and Surrogate Delta Frame

Fully Assembled PSMA with Hexapod Assembly and ROC Actuator

PMSA Processing Flow

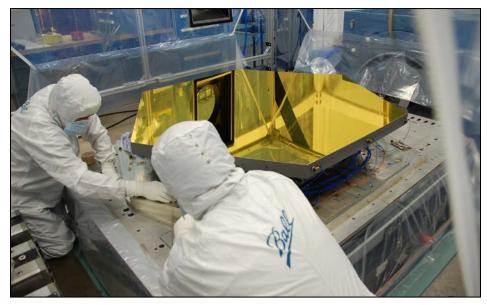


Mirror Fabrication and Test Now Complete (As Run Schedule)

Sample of Mirror Risk Management History

RISK Title	Likelihood	Impact	Exposure	Asignee	Dates	RISK	MITIGATION
Beryllium Mirror Optical Spec	Moderate	High	Moderate	Feinberg, Lee	Open 3/17/03 Closed 10/19/05	IF Lightweight mirrors do not meet optical spec at the segment level; THEN OTE will not meet level 2 image requirement at 2 microns	Completed fabrication of AMSD-2 mirrors 20 nm convergence task performed by Ball/Tinsley Additional AMSD-3 tasks and EDU
Beryllium mirror grinding/polishing stress characterization	Very Low	Low	Low	Feinberg, Lee	Open 4/4/03 Closed-Mitigated 3/1/11	IF the parameters that affect the residual stress created during grinding and polishing are not well understood; THEN the schedule for manufacturing the beryllium optics can easily exceed program requirements	Demonstrate Stress Controls on EDU and A1. Closed after second cryo test confirmed that cryo polishing successful.
Beryllium Mirror Performance	Low	Moderate	Low	Feinberg, Lee	Open-9/8/03 Closed-Mitigated 3/1/11	IF "Be" mirror do not converge to 20nm; THEN OTE will not meet final level 2 spec	Mitigated through additional AMSD-3 tasks and EDU, including 20nm demonstration (completing AMSD to 20nm's ambient)
PMSA Edges	Moderate	Very Low	Low	Feinberg, Lee	Open-1/23/04 Closed-Mitigated 3/1/11	IF the straylight effects of PMSA edges are not quantified and the edges processed to insure the straylight is within the acceptable limits; THEN the level 2 encircled energy requirement may not be met and/or significant schedule slippages and cost overruns may occur.	Reviewed EDU, A1 edges, modelling of results. Metrology equipment added: Scanning Shack Hartman A1 edges met spec. EDU completed.

Environmental Testing



Acoustics

Cryo Vibe

Mirror Results

Secondary

Tertiary

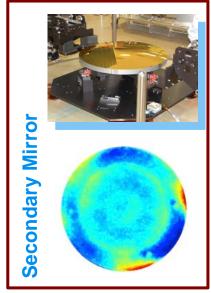
Fine Steering

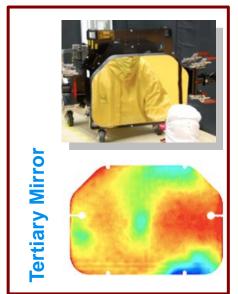
A1

C3

B6

JWST Mirrors Completed in 2011





Mirror	Measured (nm rms SFE)	Uncertainty (nm rms SFE)	Total (nm rms SFE)	Req (nm rms SFE)	Margin (nm rms SFE)
Primary Mirror (18 mirror composite)	23.6	8.1	25.0	25.8	6.4
Secondary Mirror	14.7	13.2	19.8	23.5	12.7
Tertiary Mirror	18.1	9.5	20.5	23.2	10.9
Fine Steering Mirror	13.9	4.9	14.7	18.7	11.6

Mirror Results

	SFE total measured	hi freq measured	XRCF tot measured	XRCF hi measured	Tinsley sub aperture very hi measured	metrology	SFE metrology uncertainty hi								
	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)						Tinsley		
allocation	23.6	12.2											sub		SFE
max	44.2	12.5	44.0	11.7	5.8	8.2	2.3						aperture	SFE	metrolog
min	16.5	8.1	15.7	7.1	2.9	8.0	2.3		SFE total			XRCF hi		metrology	
rms	23.6	10.0	23.1	8.9	4.5	8.1	2.3							uncertaint	
mean	22.4	9.9	21.9	8.8	4.4	8.1	2.3		d	d	d	d	d	y tot	ty hi
std cum	7.5	1.4	7.6	1.4	0.9	0.1	0.0		(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)
A1	17.9	9.5	17.7	9.0	2.9	8.0	2.3	B5	18.4	9	18.0	8.1	3.9	8.2	2.3
A2	22.2	11.2	21.9	10.7	3.4	8.0	2.3	В6	17.5	10.2	17.0	9.4	4.0	8.2	2.3
								В7	22.6	8.9	22.2	7.8	4.3	8.2	2.3
A3	21.8	12.3	21.0	10.8	5.8	8.0	2.3	В8	23.7	9.6	23.3	8.4	4.6	8.2	2.3
A4	17.1	8.2	16.8	7.5	3.2	8.0	2.3	C1	22.1	9	21.5	7.4	5.1	8.2	2.3
A.5	40.5	40.4	45.7	0.0	5.0	0.0	0.0	- 01	22.1	- 3	21.0	7.4	3.1	0.2	
A5	16.5	10.1	15.7	8.8	5.0	8.0	2.3	C2	20.1	8.7	19.5	7.1	5.0	8.2	2.3
A6	44.2	12.5	44.0	11.7	4.5	8.0	2.3	СЗ	18.1	8.1	17.8	7.4	3.2	8.2	2.3
<u> </u>	40.7	0.0	47.0	7.0	F 7	0.0	0.0	C4	39.5	12.3	39.2	11.2	5.0	8.2	2.3
B2	18.7	9.2	17.8	7.2	5.7	8.2	2.3	C5	20.5	10.2	20.1	9.3	4.2	8.2	2.3
В3	18.7	9.1	18.2	8.1	4.2	8.2	2.3	C6	23.9	10	23.3	8.4	5.4	8.2	2.3

Surface Area Requirement: >1.4746 m2 per segment

Surface Area: 1.47533 m2 mean

Total PM Surface Area = 26.55m2

See paper by Paul Lightsey for More details

The Team

Summary

- In 8.5 years, 21 flight lightweighted, cryogenic beryllium mirrors were developed
- The original technology effort benefitted from a collaboration between NASA and other government agencies
- The development effort was led by Ball Aerospace with collaboration and input by NGAS, NASA and Academia
- The mirrors meet their top level specifications
- We overcame many technical challenges through aggressive risk management
- Our focus now is on finishing the rest of the telescope and performing system level testing